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This work investigates rotational effects on propagation and reflection of waves at the free
surface of a micropolar fibre-reinforced medium with voids under magnetic fields. When the
P-wave is incident on the free surface, there exist four coupled reflected plane waves traveling
in the medium; quasi-longitudinal displacement (qLD) wave, quasi-transverse displacement
(qTD) wave, quasi-transverse microrotational (qTM) wave and a wave due to voids. Nor-
mal mode analysis is adopted in concomitant with Snell’s laws, and appropriate boundary
conditions in determination of the solution. Amplitude ratios which correspond to reflected
waves in vertical and horizontal components are presented analytically and graphically.
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1. Introduction

Fibre-reinforced composite materials and their analysis of stress and deformation are of great
interest to researchers in solid mechanics. This is as a result of its weightlessness and high ten-
sile strength. Structural designers mostly in the field of engineering, science and technology,
usually sought after such type of materials. However, many researchers have investigated wave
propagation in various materials or media. But a particular investigation of isotropic generalized
solids with voids paved way as an evidence to the existence of new or transformed waves, whose
importance to seismologists in improving earthquake estimations cannot be over emphasized.
In geophysics, for instance, the reflection and refraction of seismic waves gave credence to re-
searchers to investigate the earth’s interior and structures. Thus, it is obvious that most large
bodies such as planets, moon and earth possess angular velocity. Consequently, this necessitates
the study of rotational effects on reflection of plane waves. Moreover, the frame of reference of
rotation of the medium, centrifugal acceleration and Coriolis effects are taken into considerations
in the equation of motion.

On the other hand, micro-continuum as a material property due to deformation consists of
microstretch, micropolar and micromorphic theories, and this depends on the order to which
the micro-degree is incorporated. Eringen (1967) developed theory from micropolar elasticity
to micropolar linear constitutive theories with internal friction. McCarthy and Eringen (1969)
investigated the problem on micropolar viscoelastic waves. Kumar et al. (1990) studied pro-
blems associated with Lamb’s plane micropolar viscoelastic medium with stretch. Biswas et al.
(1996) studied the axisymmetric Lamb’s problem of a micropolar viscoelastic medium. Singh
and Kumar (1998) investigated the amplitude ratios of reflection and refraction of plane waves
between a micropolar elastic solid and viscoelastic solid interfaces. Singh (2000) developed the re-
flection/transmission between a liquid and micro-polar viscoelastic solid interfaces with stretch.
Nunziato and Cowin (1979) and Cowin and Nunziato (1983) discussed both linear and nonlinear
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theories of elastic porous media. Puri and Cowin (1985) studied the effects of voids on plane wa-
ves in linear elastic media. Singh (2017) gave account of reflection of elastic plane surface waves
of a half-space with impedance boundary conditions. Sengupta and Nath (2001) discussed sur-
face waves in fibre-reinforced media. Chattopadhyay et al. (2002) studied reflection of quasi-SV
and quasi-P waves using both free and rigid boundary conditions of a fibre-reinforced medium.
Chaudhary et al. (2004) envisaged reflection/transmission of plane waves between self-reinforced
two elastic half-spaces. Khan et al. (2015) studied the effects of surface waves under the influence
of gravity in a non-homogeneous fibre-reforced media with voids. Tauchert (1971) investigated
thermal stresses in micropolar elastic solids. Chattopadhyay and Choudhury (1990) obtained
results on propagation, reflection/transmission of waves under the magnetic effects in a self-
-reinforced medium. Kumar et al. (2015) worked on reflection of plane waves in transversely iso-
tropic micropolar viscoelastic media with thermal effects. Furthermore, Abd-Alla et al. (2017)
investigated rotational behavior of magneto-thermoelastic surface waves in fibre-reinforced vi-
scoelastic media of higher order. Lata (2018) studied reflection and refraction of plane waves in
a layered nonlocal elastic and anisotropic thermoelastic medium. Schoenberg and Censor (1973)
examined the propagation of waves in a rotating, homogeneous, isotropic, linear elastic medium.
An eigenvalue approach was utilized by Sinha and Bera (2003) to solve the fundamental equ-
ations of problems of generalized thermoelasticity with one relaxation parameter including the
heat source in an infinite rotating medium. Sunita et al. (2019) examined reflection on a free
surface of a fibre-reinforced thermoelastic rotating medium with two-temperature and phase-lag.
Roy et al. (2017), examined propagation and reflection of plane waves in a rotating magneto-
elastic fibre-reinforced semi space with surface stress. Hillion (2008) investigated harmonic plane
wave propagation in anisotropic chiral media.
In the light of the above literature, the current study envisages propagation and reflection

of magneto-elastic plane waves at free surfaces of a rotating micropolar fibre-reinforced medium
with porosity under magnetic fields. That is, interactions between the magnetic field and the
rotating micropolar fibre-reinforced medium with voids or porosity in the x1x2-plane is conside-
red. Due to micropolarity, the coefficient matrices in the constituent relations are non-symmetric
i.e., the stress tensors and deformation tensors are considered to be non-symmetric. Thus, the
micropolar fibre-reinforced problem in 2-D is modelled. The governing equations are solved by
using free boundary conditions also called natural boundary conditions. We observed that four
reflected waves exist when, in particular, the P-wave is incident on the free surface or at the
boundary x2 = 0; quasi-longitudinal displacement (qLD) or P-wave, quasi-transverse displace-
ment (qTD) or SV-wave, quasi-transverse microrotational (qTM) wave and a wave due to voids.
Amplitude ratios or reflection coefficients which correspond to the reflected waves in both hori-
zontal and vertical components are presented analytically. Also, by using Mathematica software,
computational results which stipulate the effects of rotation, magnetic field, fibre-reinforced and
voids parameters for the horizontal reflection coefficients are shown graphically. Some particu-
lar results can also be deduced in the absence of rotation, magnetic field and fibre-reinforced
parameters, yielding the results of a micropolar isotropic solid with voids.

2. Formulation of the problem

The basic field relations for a micro-polar fibre-reinforced homogenous linearly elastic anisotropic
medium with the reinforcement direction a and voids (Eringen, 1967; Kumar et al., 2015; Lakes
and Benedict, 1982; Cowin and Nunziato, 1983) are specified by

σij = BijmnEmn +Nijmnψmn + ξφδij mij = BjimnEmn +Nmnjiψmn (2.1)

The deformations and wryness tensors are taken as

Eij = uj,i + εjimφ
∗

m ψmn = φ
∗

m,n i = j = m = n = 1, 2, 3 (2.2)
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The balance laws in the presence of rotation, magnetic fields and voids (Abd-Alla et al., 2017;
Eringen, 1967; Cowin and Nunziato, 1983) are written below

σij,i + Fj = ρ(üj +ΩiuiΩj −Ω
2uj + 2εjikΩiu̇k)

mij,i + εjmnσmn = ρJφ̈
∗

j

ξ1(φ,ii)− ω0φ−̟φ̇− ξ(ui,i) = ρκφ̈

(2.3)

Let the solid medium be rotating about the x3-axis with uniform angular velocity Ω, i.e.
Ω = Ω(0, 0, 1), where σij [N/m

2], mij [N/m
2], φ∗j , uj [m] and φ are the stress tensor, couple

stresses, microrotation vector, displacement vector and volume fraction field, respectively. Also,
ρ, ξ and J [m2] represent the bulk mass density, void parameter and micronertia respectively.
Bijmn, Bjimn and Nijmn are characteristic constants of the material, and also non symmetric
properties of Bijmn, Bjimn and Nijmn hold. For simplicity, we chose a = [a1, a2, a3] such that
a = [1, 0, 0] as the fibre direction. δij is the Kronecker-delta function, εjim is the Levi-Civita
alternating symbol or tensor. The index after comma represents partial derivative with respect
to coordinate and the superscript dot specifies partial derivative with respect to time. Consider
deformation in the x1x2-plane and the microrotation vector as φ

∗ = [0, 0, φ∗3]. Also Einstein
summation convention over repeated indexes is used. However, Fi = µ0εijkJjHk and we take
the linearized Maxwell equations governing the electromagnetic field for a perfectly conducting
medium as

εijkHk,j = ε0εijkJjĖk εijkEk,j = −µ0Ḣi Hi,i = 0

Ei,i = 0 Ei = µ0εijku̇jHk

where Hi = H0δi3 + hi, hi is the induced magnetic field and ε0 is electric permeability in
farads/meters [F/m], and the material lies in the x1x2-plane. Thus, Hi = H0δi3 + hi. Then the
magnetic force is given as follows: Fi = µ0H

2
0 (e,i−ε0µ0üi), F3 = 0 and hi(x1, x2, x3) = −uk,kδi3,

where e = u1,1 + u2,2. In these equations, Fi represents the magnetic force in newtons [N], Ji is
the current density in A/m2,Hi is the magnetic field vector having SI unit as ampere per meter
[A/m], and µ0 is magnetic permeability, measured in henry per metre [H/m]. Considering the
fact that the tensors are non-symmetric, Eqs. (2.3) in the component form can be written as
follows

B1u1,11 + (B2 +B3)u2,12 +B4u1,22 +B
∗

1φ
∗

3,2 + ξφ,1 = ε0µ
2
0H
2
0 ü1 + ρ(ü1 −Ω

2u1 − 2u̇2Ω)

B5u2,11 +B2u1,12 +B6u2,22 −B5φ
∗

3,1 + ξφ,2 = ε0µ
2
0H
2
0 ü2 + ρ(ü2 −Ω

2u2 + 2u̇1Ω)

B5φ
∗

3,11 +B4φ
∗

3,22 − 2B4φ
∗

3 +B4(u2,1 − u1,2) = ρJφ̈
∗

3

ξ1(φ,11 + φ,22)− ω0φ−̟φ̇− ξ(u1,1 + u2,2) = ρκφ̈

(2.4)

where

B1 = λ+ β + 2α− 2µT + 4µL + µ0H
2
0 ) B2 = λ+ α+ µ0H

2
0

B3 = 2(µL − µT ) B4 = 2µT B5 = 2µL

B6 = λ+ 2µT + µ0H
2
0 B∗1 = B4 −B3

(2.5)

Also λ represents Lame’s material constant, α, β and (µL − µT ) are the fibre-reinforced para-
meters. All these parameters define the anisotropic model. If we consider µL = µT = µ (Lame’s
constant) and α = β = 0, the simple isotropic case is achieved.

3. Normal modes analysis and solution of the problem

Consider a rotating homogeneous micropalar fibre-reinforced anisotropic magneto-elastic me-
dium with voids occupying the half-space x2 ¬ 0 under the influence of a magnetic field. And
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let the plane waves be incident at the free boundary x2 = 0 at an angle θ with the x2-axis.
Let the normal mode analysis be applicable such that the incident waves have the following
displacements chosen as

{uj , φ
∗, φ} = {R,P, φ∗0, φ0}e

i[k(x1 sin θ+x2 cos θ)−ωt] j = 1, 2 (3.1)

where R, P , φ∗0 and φ0 are amplitudes of u1, u2, φ
∗

3 and φ, measured in meters, respectively.
ω is the angular velocity in radians per second, c = ω/k is the phase velocity of the wave in
meter per second, and k is the wave number and (sin θ, cos θ) represents the projection of waves
normal onto the x1x2-plane. We make use of Eq. (3.1) into Eqs. (2.4), respectively, which yields

{

D1−
[Ω2

k2
ρ+ c2(ε0µ

2
0H
2
0 + ρ)

]}

R+
[

(B2 +B3) cos θ sin θ + 2ic
Ω

k
ρ
]

− i
(

B∗1
1

k
cos θ
)

φ∗0 − i
(

ξ
1

k
sin θ
)

φ0 = 0

(

B2 cos θ sin θ − 2ic
Ω

k
ρ
)

R+
{

D2 −
[Ω2

k2
ρ+ c2(ε0µ

2
0H
2
0 + ρ)

]}

P

+ i
(

B5
1

k
sin θ
)

φ∗0 − i
(

ξ
1

k
cos θ
)

φ0 = 0

(ikB4 cos θ)R− (ikB4 sin θ)P + (k
2D3 + 2B4 − Jk

2ρc2)φ∗0 = 0

(iξk sin θ)R+ (iξk cos θ)P + (ξ1k
2 + ω0 −̟ikc− ρκk

2c2)φ0 = 0

(3.2)

where D1 = B1 sin
2 θ+B4 cos

2 θ, D2 = B5 sin
2 θ+B6 cos

2 θ, and D3 = B5 sin
2 θ+B4 cos

2 θ. For
a non-trivial solution, Eqs. (3.2) becomes the quartic equation as follows

r4 +H1r
3 +H2r

2 +H3r +H4 = 0 (3.3)

where r = c2 which means that characteristic Eq. (3.3) with complex material coefficients
H1, H2, H3 and H4, yields four distinct complex roots; detailing that four waves propagate,
with complex phase velocities c1, c2,c3 and c4 corresponding to the wave numbers k1, k2, k3
and k4, respectively. So this means that the two dimensional model of reflection and propaga-
tion of magneto-elastic plane waves in a rotating micropolar fibre-reinforced half space medium
with voids under consideration have four reflected waves; quasi-P wave, quasi-SV wave, quasi-
transverse microrotational wave and a wave due to voids travelling in the medium, if we assume
that anyone of the four waves is incident at the free surface of the material.

4. Reflection of plane waves at the free surface

We consider the case when the quasi-P wave (A0) is incident at the boundary x2 = 0 of the
rotating micropolar fibre-reinforced anisotropic semi-infinite medium with voids under the in-
fluence of magnetic fields. Then, there exists four coupled reflected waves as the quasi-P (A1),
quasi-SV (A2), quasi-TM (A3) and due to void (A4), see Fig. 1.
Thus, the total displacements can be assumed in the following form

{u1, u2, φ
∗

3, φ} =
4
∑

l=0

{Rl, Pl, φ
∗

0, φ0}e
idl (4.1)

where

d0 = k0[x1 sin(e) + x2 cos(e)− c1t] d1 = k1[x1 sin(e) − x2 cos(e)− c1t]

d2 = k2[x1 sin(f)− x2 cos(f)− c2t] d3 = k3[x1 sin(g) − x2 cos(g)− c3t]

d4 = k4[x1 sin(h)− x2 cos(h)− c4t]
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Fig. 1. Schematic of the problem showing incident and reflected waves

and R0 is the amplitude of the incident wave while Rl, l = 1, 2, 3, 4, are amplitudes of the
reflected waves in the horizontal components. Similarly, P0 is the amplitude of the incident wave
in the vertical components while Pl, l = 1, 2, 3, 4 are amplitudes of reflected waves in the vertical
components. Incident and reflected waves given by (4.1) must satisfy equations of motion (2.4)1,2
as a result of the consistency condition; following (Roy et al., 2017; Baljeet and Sarva, 2004),
Eq. (2.4)1 becomes

[D1(e) − l1]R0 +
[

(B2 +B3) sin(e) cos(e) + 2ic1
Ω

k1
ρ
]

P0

− i
[ i

k0
B∗1 cos(e)

]

φ∗0 −
[ i

k0
ξ sin(e)

]

φ0 = 0

[D1(e) − l1]R1 −
[

(B2 +B3) sin(e) cos(e) − 2ic1
Ω

k1
ρ
]

P1

− i
[ i

k1
B∗1 cos(e)

]

φ∗0 −
[ i

k1
ξ sin(e)

]

φ0 = 0

[D1(f)− l2]R2 −
[

(B2 +B3) sin(f) cos(f)− 2ic2
Ω

k2
ρ
]

P2

− i
[ i

k2
B∗1 cos(f)

]

φ∗0 −
[ i

k2
ξ sin(f)

]

φ0 = 0

[D1(g) − l3]R3 −
[

(B2 +B3) sin(g) cos(g) − 2ic3
Ω

k3
ρ
]

P3

− i
[ i

k3
B∗1 cos(g)

]

φ∗0 −
[ i

k3
ξ sin(g)

]

φ0 = 0

[D1(h) − l4]R4 −
[

(B2 +B3) sin(h) cos(h)− 2ic4
Ω

k4
ρ
]

P4

− i
[ i

k4
B∗1 cos(h)

]

φ∗0 −
[ i

k4
ξ sin(h)

]

φ0 = 0

(4.2)

Equation (4.2) is made possible using Snell’s law such that: c1k0 = c1k1 = c2k2 = c3k3 = c4k4
and also k0 sin(e) = k1 sin(e) = k2 sin(f) = k3 sin(g) = k4 sin(h). Observe that k0 = k1 and ci,
i = 1, 2, 3, 4, are functions of material parameters. We can rewrite Eq. (4.2) as follows
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R0 = −b1P0 + b2φ
∗

0 + b3φ0 R1 = b1P1 + b4φ
∗

0 + b5φ0

R2 = b6P2 + b7φ
∗

0 + b8φ0 R3 = b9P3 + b10φ
∗

0 + b11φ0

R4 = b12P4 + b13φ
∗

0 + b14φ0

(4.3)

where

b1 =
(B2 +B3) sin(e) cos(e) + (2ic1Ωρ)/k1

D1(e)− l1
b2 =

iB∗1 cos(e)

k0[D1(e)− l1]

b3 =
iξ sin(e)

k0[D1(e)− l1]
b4 =

iξB∗1 cos(e)

k1[D1(e)− l1]
b5 =

iξ sin(e)

k1[D1(e)− l1]

b6 =
(B2 +B3) sin(f) cos(f)− (2ic2Ωρ)/k2

D1(f)− l2)
b7 =

iB∗1 cos(f)

k2[D1(f)− l2]

b8 =
iξ sin(f)

k2[D1(f)− l2]
b9 =

(B2 +B3) sin(g) cos(g) − (2ic3Ωρ)/k3
D1(g) − l3

b10 =
iB∗1 cos(g)

k3[D1(g) − l3]
b11 =

iξ sin(g)

k3[D1(g) − l3]

b12 =
(B2 +B3) sin(h) cos(h)− (2ic4Ωρ)/k4

D1(h) − l4
b13 =

iB∗1 cos(h)

k4[D1(h)− l4]

b14 =
iξ sin(h)

k4[D1(h)− l4]
l1 =

Ω2

k21
ρ+ c21(ε0µ

2
0H
2
0 + ρ)

l2 =
Ω2

k22
ρ+ c22(ε0µ

2
0H
2
0 + ρ) l3 =

Ω2

k23
ρ+ c23(ε0µ

2
0H
2
0 + ρ)

l4 =
Ω2

k24
ρ+ c24(ε0µ

2
0H
2
0 + ρ)

4.1. Free boundary conditions at the surface of the medium

We consider a free surface boundary at x2 = 0 of the micropolar fibre-reinforced rotating
semi-infinite medium permeated by a uniform magnetic field with voids, i.e.: σi2 + σi2 = 0,
i = 1, 2, m23 = 0, and φ,2 = 0 at x2 = 0. Maxwell’s stresses (Abd-Alla et al., 2017) are

σij = µ0H0(Hihj +Hjhi −Hkhkδij) ⇒ σij = µ0H0

∣

∣

∣

∣

∣

∣

∣

−h3 0 h1
0 −h3 h2
h1 h2 h3

∣

∣

∣

∣

∣

∣

∣

h3 = −H0(u1,1 + u2,2)h1 = h2 = 0

and

for i = 1 : σ12 + σ12 = 0 but σ12 = 0 ⇒ σ12 = 0

for i = 2 : σ22 + σ22 = 0 ⇒ σ22 + µ0H
2
0 (u1,1 + u2,2) = 0

m23 = 0 ⇒ φ∗3,2 = 0 φ,2 = 0

(4.4)

Thus, from equation (4.3), we obtain the ratio

R1
R0
=
1

ς

(b1P1
P0
+
b4φ
∗

0

P0
+
b5φ0
P0

) R2
R0
=
1

ς

(b6P2
P0
+
b7φ
∗

0

P0
+
b8φ0
P0

)

R3
R0
=
1

ς

(b9P3
P0
+
b10φ

∗

0

P0
+
b11φ0
P0

) R4
R0
=
1

ς

(b12P4
P0
+
b13φ

∗

0

P0
+
b14φ0
P0

)

ς =
b2φ
∗

0

P0
+
b3φ0
P0
− b1

(4.5)
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and also by using Eqs. (4.4), we have

(a11P1 + a12P2 + a13P3 + a14P4)
1

P0
= a15

(a21P1 + a22P2 − a23P3 + a24P4)
1

P0
= −a25

(a31P1 − a32P2 + a33P3 + a34P4)
1

P0
= −a35

(a41P1 + a42P2 + a43P3 − a44P4)
1

P0
= a45

(4.6)

where

a11 = k1 sin(e) a12 = k2 sin(f) a13 = k3 sin(g) a14 = k4 sin(h)

a15 = −k0 sin(e)−
iφ∗0
P0

a21 = [L1b1 sin(e) − L2 cos(e)]k1

a22 = [L1b6 sin(f)− L2 cos(f)]k2 a23 = −[L1b9 sin(g) − L2 cos(g)]k3

a24 = [L1b12 sin(h)− L2 cos(h)]k4

a25 = −[L1b1 sin(e)− L2 cos(e)]k0 − L1
{(

b2
φ∗0
P0
+ b3

φ0
P0

)

k0 sin(e)

+
(

b4
φ∗0
P0
+ b5

φ0
P0

)

k1 sin(e) +
(

b7
φ∗0
P0
+ b8

φ0
P0

)

k2 sin(f) +
(

b10
φ∗0
P0
+ b11

φ0
P0

)

k3 sin(g)

+
(

b13
φ∗0
P0
+ b14

φ0
P0

)

k4 sin(h)
}

+ iξ
φ0
P0

a31 = −B1b1a
2
11 + (B2 +B3)a11k1 cos(e) + 2iρc1k1Ω −B4b1k

2
1 cos

2(e)

+ [Ω2ρ+ c21k
2
1(ε0µ

2
0H
2
0 + ρ)]b1

a32 = −{−B1b6a
2
12 + (B2 +B3)a12k2 cos(f) + 2iρc2k2Ω −B4b6k

2
2 cos

2(f)

+ [Ω2ρ+ c22k
2
2(ε0µ

2
0H
2
0 + ρ)]b6}

a33 = −B1b9a
2
13 + (B2 +B3)a13k3 cos(g) + 2iρc3k3Ω −B4b9k

2
3 cos

2(g)

+ [Ω2ρ+ c23k
2
3(ε0µ

2
0H
2
0 + ρ)]b9

a34 = −B1b12a
2
14 + (B2 +B3)a14k4 cos(h) + 2iρc4k4Ω −B4b12k

2
1 cos

2(h)

+ [Ω2ρ+ c24k
2
4(ε0µ

2
0H
2
0 + ρ)]b12

a35 = −
{

B1
[(

−b1 + b2
φ∗0
P0
+ b3

φ0
P0

)

k20 sin
2(e) +

(

b4
φ∗0
P0
+ b5

φ0
P0

)

a211 +
(

b7
φ∗0
P0
+ b8

φ0
P0

)

a212

+
(

b10
φ∗0
P0
+ b11

φ0
P0

)

a213 +
(

b13
φ∗0
P0
+ b14

φ0
P0

)

a214

]

+ (B2 +B3)k
2
0 cos

2(e) + 2iρc1Ω

+B4
[(

−b1 + b2
φ∗0
P0
+ b3

φ0
P0

)

k20 cos
2(e) +

(

b4
φ∗0
P0
+ b5

φ0
P0

)

k21 cos
2(e)

+
(

b7
φ∗0
P0
+ b8

φ0
P0

)

k22 cos
2(f) +

(

b10
φ∗0
P0
+ b11

φ0
P0

)

k23 cos
2(g)

+
(

b13
φ∗0
P0
+ b14

φ0
P0

)

k24 cos
2(h)
]

−
(

−b1 + b2
φ∗0
P0
+ b3

φ0
P0

)

[Ω2ρ+ c21k
2
0(ε0µ

2
0H
2
0 + ρ)]

−
(

b4
φ∗0
P0
+ b5

φ0
P0

)

[Ω2ρ+ c21k
2
1(ε0µ

2
0H
2
0 + ρ)]−

(

b7
φ∗0
P0
+ b8

φ0
P0

)

[Ω2ρ+ c22k
2
2(ε0µ

2
0H
2
0 + ρ)]

− ρ
(

b10
φ∗0
P0
+ b11

φ0
P0

)

[Ω2ρ+ c23k
2
3(ε0µ

2
0H
2
0 + ρ)]

− ρ
(

b13
φ∗0
P0
+ b14

φ0
P0

)

[Ω2ρ+ c24k
2
4(ε0µ

2
0H
2
0 + ρ)]− iξ

φ0
P0
[k0 sin(e) + a11 + a12 + a13 + a14]
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a41 = −(B5 +B6)a
2
11 + [B2a11k1 cos(e)− 2iρc1k1Ω]b1 +Ω

2ρ+ c21k
2
1(ε0µ

2
0H
2
0 + ρ)

a42 = −(B5 +B6)a
2
12 + [B2a12k2 cos(f)− 2iρc2k2Ω]b6 +Ω

2ρ+ c22k
2
2(ε0µ

2
0H
2
0 + ρ)

a43 = −(B5 +B6)a
2
13 + [B2a13k3 cos(g)− 2iρc2k3Ω]b9 +Ω

2ρ+ c23k
2
3(ε0µ

2
0H
2
0 + ρ)

a44 = −{−(B5 +B6)a
2
14 + [B2a14k4 cos(h)− 2iρc2k4Ω]b12 +Ω

2ρ+ c24k
2
4(ε0µ

2
0H
2
0 + ρ)}

a45 = [B5 sin
2(e) +B6 cos

2(e)]k20 −Ω
2ρ+ c21k

2
0(ε0µ

2
0H
2
0 + ρ)

+
(

b2
φ∗0
P0
+ b3

φ0
P0

)

[B2k
2
0 cos(e) sin(e)− 2iρc1k1Ω]

−
(

b4
φ∗0
P0
+ b5

φ0
P0

)

[k1B2a11 cos(e)− 2iρc1k1Ω]

−
(

b7
φ∗0
P0
+ b8

φ0
P0

)

[k2B2a12 cos(f)− 2iρc2k2Ω]

−
(

b10
φ∗0
P0
+ b11

φ0
P0

)

[B2k3a13 cos(g) − 2iρc3k3Ω]

−
(

b13
φ∗0
P0
+ b14

φ0
P0

)

[k4B2a15 cos(h) − 2iρc4k4Ω]

+ iB5
φ∗0
P0
[k0 sin(e) + a11 + a12 + a13 + a14]

L1 = B2 L2 = B6

Equation (4.6) can be solved for Pi/P0, i = 1, 2, 3, 4 using Crammer’s rule or any solver.
Wi = |Pi/P0|, i = 1, 2, 3, 4, give the amplitude ratios along the vertical reflection component.
Hence, the amplitude ratios Zi = |Ri/R0|, i = 1, 2, 3, 4, along the horizontal reflection component
can be obtained from Eqs. (4.5) by substituting the values of Pi/P0, i = 1, 2, 3, 4.

5. Computational results and discussion

The effects of rotation, reinforcement and voids parameters on reflection coefficients of plane
waves in the micropolar fibre-reinforced material under the influence of a magnetic field are
studied by considering the following numerical physical constants (Othman and Lotfy, 2013)
and other parameters as: λ = 7.59 · 109N/m2, µT = 1.89 · 10

9N/m2, µL = 2.45 · 10
9N/m2,

ρ = 7800Kg/m3, α = −1.28 · 109 N/m2, β = 0.32 · 109 N/m2, ξ = 220.90 · 109N/m2,
H0 = 100A/m, Jk

2 = 1, Ω = 50/s.

Using Snell’s law, the angle of reflections and the wave numbers are calculated. Also the
speeds of waves; c1, c2, c3 and c4 for qlD, qTD, qTM and the wave due to voids, respectively,
are obtained from quartic Eq. (3.3). Thus, the graphs are presented in Figs. 2-4. That is, we
considered variations of rotation Ω (angular velocity) of the medium, magnetic field, and voids
ξ parameters. This is to ascertain the effects of these parameters on the horizontal reflection
coefficients (RC or Zi) of the reflected waves when, in particular, the P-wave is incident with
angle e.

Figures 2a-2d represents the effects of rotation to the reflection coefficients Zi, i = 1, 2, 3, 4
of the waves (qlD, qTD, qTM and due to voids) under constant magnetic fields and voids
parameters. Also it suffices that the reflection coefficients have its maximum close to the normal
incidence angle of the wave in the medium. Consequently, Figs. 2a-2d depict that the reflection
coefficients increase when the rotation parameter increases. Though, the reflection coefficients
in Figs. 2a-2d show very slight uniform behavior near e > 40◦ as it vanishes at grazing angles of
incidence. Moreover, an increase in the angle of incidence, decreases the reflection coefficients in
all cases due to reinforcement of the medium. However, it entails that the propagation of waves
at different points in the medium with an increase in rotation will decrease the speed of waves
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except for the wave due to voids (Fig. 2f), which is unaffected at all points of propagation. Also,
as the angle of propagation increases, the speed of waves increases. The speed of waves vanishes
at the grazing angle of incidence, which is the same for the coefficients of reflected waves. Hence,
the dependencies of the constituent parameters of the system are proportional.

Fig. 2. Variations of the reflection coefficients Zi and speed of waves versus the incidence angle for
distinct values of rotation Ω

It is observed in Figs. 3a-3d that the reflection coefficients Zi(RC), i = 1, 2, 3, 4 of qLD
(P-wave), qTD (SV-wave), qTM (quasi-transverse microrotational wave) and wave due to voids,
respectively, decrease for the increasing angle of incidence for uniform rotation and voids pa-
rameters. They have sharp and fast increasing behavior in the presence of constant rotation
and voids effects with respect to varying high magnetic field H0 effects, except for Z3 which
decreases. In Fig. 3 Zi(RC), i = 1, 2, 3, 4 start with their curves at maximum values close to
the normal incidence and, afterwards, decrease slightly when the angle of incidence varies near
e > 45◦ and, finally, vanish at grazing incidence. Thus, at some points in the medium, varying
magnetic field effects could lead to a decrease or increase in the reflection coefficients of the
waves with combined uniform porosity and rotation of the medium. Furthermore, for higher
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magnetic field, reflection of the wave is possible and its reflection coefficients may possess small
or high values in such a medium. Thus, for an increased incidence angle, reflection coefficients
in the mircopolar fibre-reinforced medium yield low values in the presence of rotation and voids.

Fig. 3. Variations of the reflection coefficients Zi versus the incidence angle for distinct values of H0

Fig. 4. Variations of the reflection coefficients Zi versus the incidence angle for distinct values of ξ
parameter



Propagation and reflection of magneto-elastic plane waves... 879

Furthermore, Figs. 4a-4d depict variation of reflection coefficients Zi(RC), i = 1, 2, 3, 4 of
qLD (P-wave), qTD (SV-wave), qTM (quasi-transverse microrotational wave) and the wave due
to voids, respectively, for uniform rotation and magnetic field parameters. They are increasing
with respect to an increased voids parameter ξ in the presence of a constant applied magnetic
field and rotation. They decrease when the angle of incidence increases due to the mircopolar
fibre-reinforced medium. Figure 4 shows the curves at maximum values close to the normal
incidence and, subsequently, decreasing very slightly and finally vanishing at grazing incidence.

6. Conclusion

We investigated the propagation and reflection of magneto-elastic plane waves at free surfaces
of a rotating micropolar fibre-reinforced medium with porosity. Four coupled reflected plane
waves traveling in the medium; quasi-longitudinal displacement (qLD) wave, quasi-transverse
displacement (qTD) wave, quasi-transverse microrotational (qTM) wave and a wave due to voids
were observed. The characteristics of the propagation and reflection of the waves were made up
of angular velocity of the medium Ω, micropolar fibre-reinforced and voids parameters under
the influence of magnetic fields. It was deduced that these parameters greatly influenced the
reflection coefficients Zi, speeds and modulation of waves. It means that the micropolar fibre-
reinforcement tends to decrease the reflection coefficients in the medium with effects of rotation,
magnetic fields and voids as the angle of incidence increases in the medium. The speeds of
waves were affected by the rotation parameter by decreasing its propagation. Generally, the
reflection coefficients Zi, decreased for an increased incident angle due to the micropolar fibre-
reinforcement. It is noted that rotation increased at certain values the reflection coefficients
while high magnetic field decreased the reflection coefficients Zi of reflected qTM waves in the
modelled problem. Moreover, voids increasrd the reflection coefficients of qLD, (P-wave), qTD
(SV-wave) and qTM (quasi-transverse microrotational wave) and waves due to voids. Also it is
deduced that reflection might not occur for certain incident angles in the medium. The method
used in this study is noteworthy for dealing with such problems for successful investigation. Our
modeled problem is similar to Sunita et al. (2019) if the magnetic field, micropolarity and voids
are neglected in the presence of thermo-elasticity.

The investigation should prove to be helpful for new researchers in the field and experimental
based study involving propagation and reflection of magneto-elastic plane waves at free surfaces
of a rotating micropolar fibre-reinforced medium with voids and also in fields with similar models
such as in optics, geophysics, design of new materials, etc.
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